12.10.2024
Подписывайтесь на Telegram-канал по ссылке

Нейросеть научилась эффективно мониторить качество дорожного покрытия

Neural Network for Pavement Crack Segmentation

Учёные МГУ представили собственную комбинацию известных методов на основе архитектуры нейросети U-Net. Разработка точно и надёжно обнаруживает трещины на изображениях дорожного полотна, превосходя аналоги по эффективности и скорости. Подход может дать начало новым системам мониторинга дорог в реальном времени, что поможет улучшить обслуживание отечественной инфраструктуры и обеспечить её безопасность. Результатами своего исследования математики поделились на страницах журнала IEEE Access. Код работы выложен на GitHub и может быть использован другими исследователями.

В 2019 году стартовал национальный проект «Безопасные качественные дороги», одна из основных задач которого — улучшить состояние трасс и магистралей. На данный момент и половина дорог регионального значения не соответствует нормативным требованиям, при этом около трети всех ДТП происходит из-за плохого дорожного покрытия. Именно поэтому необходимо разрабатывать новые способы отслеживания появляющихся дефектов, чтобы устранять их ещё на ранних этапах. Сотрудники НОШ МГУ «Мозг, когнитивные системы, искусственный интеллект» разработали практический метод для мониторинга качества дорожного покрытия.

«Мы используем известные методы, но находим новые комбинации, которые приводят к созданию практичного алгоритма, имеющего большое значение в реальном мире», – рассказал научный руководитель работы, сотрудник кафедры математической теории интеллектуальных систем механико-математического факультета МГУ Владимир Половников.

В основу разработки легла архитектура свёрточной нейросети U-Net, которую изначально создали для сегментации биомедицинских изображений, то есть их разделения на сегменты (например, пиксели). Проблемы при решении этой задачи почти такие же, как и при работе с фотографиями дефектных дорог: большое разнообразие форм искомого объекта, низкая контрастность, плохо видимые границы и прочие. Авторы использовали различные подходы к обработке изображений, двухэтапную процедуру обучения нейросети градиентными методами с эффективными функциями потерь, а также предложили быстрые методы оценки качества сегментирования. Сравнение с другой аналогичной системой показало превосходство разработки московских математиков и по эффективности, и по скорости.

Предложенный подход позволяет обнаруживать трещины дорожного покрытия с высокой точностью, чего не удалось достичь другим группам. Метод надёжен и сохраняет глобальную контекстную информацию, позволяя проводить исследования непосредственно на выходном изображении без постобработки и настройки параметров. Кроме того, новую систему можно применять в решении задачи бинарной классификации изображений, например для локализации дефектов, обработки медицинских данных, обнаружения лесных пожаров и прочего.