08.12.2024
Подписывайтесь на Telegram-канал по ссылке

Создана система, которая упростит процесс диагностики рака молочной железы

Breast Tumor Segmentation

Учёные Сибирского федерального университета (СФУ) в сотрудничестве с иракскими коллегами разработали систему для обнаружения границ опухоли молочной железы. Автоматизация процесса нахождения и определения пространственного расположения опухоли с помощью новой системы поможет радиологам значительно сократить время диагностики и повысить точность определения поражённых и здоровых участков. Результаты работы опубликованы в одном из международных изданий.

«Основные задачи нашей системы — сегментация, выделение границ и измерение размеров опухолевых новообразований молочной железы. Сейчас продукт тестируется и дорабатывается», — сообщил инженер-исследователь лаборатории искусственного интеллекта СФУ Юсиф Ахмед Хамад.

Пространственное расположение (сегментация) опухоли молочной железы и обнаружение её границ — важные этапы в терапии этого вида рака и последующем наблюдении за состоянием пациенток. Система состоит из нескольких этапов. Входные данные — это маммограмма молочной железы, используемая для диагностики опухолей и рака молочной железы. Медицинское изображение преобразуется в оттенки серого, если оно представлено в формате RGB — адаптивной цветовой модели. Далее изображение масштабируется в соответствующую матрицу, чтобы сохранить соотношение сторон снимка. После подготовки изображение с изменённым размером подвергается медианному фильтру, который минимизирует случайный шум, сохраняя при этом его заданные границы изображения.

«Фильтр шумоподавления используется для повышения качества и контрастности на этапе улучшения сканирования исходного изображения. Для усиления и выделения области инородных тел (опухоли или узелковых образований) мы использовали метод усиления контраста баланса. Сегментация и измерение медицинского изображения рекомендуется после улучшения изображения, чтобы точнее определить границы поражённой области. Для сегментации мы использовали методы FCM и пороговой обработки. Пороговое значение нужно, чтобы преобразовать отфильтрованное изображение в бинарное, чтобы выделить объект исследования на изображении молочной железы. FCM используется для сегментации поражённой области груди (опухоли). Последний этап исследования — детектор Кэнни, он чётко детектирует здоровые области железы и опухоли на основе разработанного метода сегментации», — объяснила руководитель исследования, доцент кафедры систем искусственного интеллекта СФУ Анастасия Сафонова.

Сравнение нового алгоритма с широко используемыми алгоритмами нейронных сетей (SegNet и UNet) показало, что точность прогноза у нового продукта выше на 18%. По словам разработчиков, в медицине уже применяют подобные алгоритмы, однако на сегодняшний день они считаются вспомогательным методом — дают возможность врачу диагностировать и детализировать границы опухоли, но не заменяют экспертное мнение полностью. Также учёные отметили, что предложенный алгоритм может быть адаптирован в том числе для выявления различных патологий лёгких — как с незначительными доработками, так и в уже существующем виде.